Status and Future of Kaon Physics at BNL

$$---K \rightarrow \pi \nu \overline{\nu} ---$$

Toshio Numao TRIUMF

AGS Experimental Hall

$$K^+ \rightarrow \pi^+ \nu \bar{\nu}$$

BR
$$\propto \eta^2 + (\rho - \rho_c)^2$$

$$BR(SM) = (7.8 \pm 1.2) \times 10^{-11}$$

BR(949) =
$$(1.47^{+1.30}_{-0.89}) \times 10^{-10}$$

E949 goal ~ 10 events

Previous search: 5.9×10^{-7} (KTEV)

KOPIO goal: 10^{-12} s.e.s., >50 events

Possible scenario

This test requires 10% measurements.

Collaborations

E787

BNL, Fukui, KEK, Osaka, Princeton, TRIUMF

E949

BNL, FNAL, Fukui, INR, KEK, Kyoto, New Mexico, Osaka, TRIUMF

KOPIO

Arizona, BNL, Cincinatti, IHEP, INR, KEK, Kyoto, Montreal, New Mexico, Perugia, SUNY, TJNAF, TRIUMF, UBC, Virginia, VPI, Yale, Zurich

E949 Detector COLLS . BARREL T-VETO Ph-CLISS COUNTER T-COUNTER -END PLATES END PLATES - BV-LINER BARREL 5-FETO PHOTOTUBES PROTOTUBES -RANCE STACE BARREL U-VETO PHOTOTURES B4 COUNTERS (MODERNIZED) COLLAR COUNTER PROTOTURES RANGE STACK PHOTOTUBES - I-COUNTER COLLAR COUNTER C.2Q8 C2010 BEAM HOLE COUNTER - TARCET PHOTOTUBES MICROCOLLAR CERENKOV COUNTER RANGE STACK PHOTOTUBES VICTORIA VILLETA Y-COUNTER BRAM CHANBER - TARCET BEAM CHAMBER 2 BND CAP T-FETO DRIFT CHAMBER Bed DEGRADER RANCE STACE CHAMBERS PIT END CAP 8-FETO

E787 → E949

Z resolution (Drift Chamber)

 π^0 Veto power

Run Summary 1995 1998 2002 E949 AGS(GeV) 24 24 21.5 24 E787/E949 1995-2002 Data Taking Summary x 10⁸ 3000 paddots 2500 spill(s) 1.4 2.2 2.2 4.1 DF(%) 41 49 41 64 $P_{\kappa}(MeV/c)$ 790 710 710 ~710 2000 K/s(MHz) /1998-99 (E787) ~1.6 0.81 0.97 1.57 1500 -1995 (E787) K/π

4.0

0.85

~10

1000

500

2002 (E949)

days (from beginning of run - e.g. 3/7/02)

Despite PS (low DF) and separator (bad K/ π) problems, and shorter run,

3.1

0.74

1.90

- -Same P,E,R resolutions (E is actually better)
- -Comparable statistics

3.8

 $N_{\rm K}/y(10^{12})$

0.76

1.55

-Higher acceptance $(0.20\% \rightarrow 0.22\%)$

4.0

0.81

2.90

Analysis strategy

To avoid a bias:

First, fix the cuts and estimate the background (1/3 data).

Use data as much as possible in the background estimates.

Bifurcated BG analysis (2/3) data.

Study the correlation.

Open the "box".

Cut-1; 'E,P,R window'

 $K_{\pi 2}$: 1=Kinematics 2=photon veto

Backgrounds inside the box

Items	E949	E787
$Nk(10^{12})$	1.8	5.9
$K^+ \rightarrow \mu^+ \nu_\mu \gamma$	0.068 ± 0.011	0.062 ± 0.045
$\mathrm{K}^{\scriptscriptstyle +} ightarrow \pi^{\scriptscriptstyle +} \pi^{\scriptscriptstyle 0}$	0.216 ± 0.023	0.034 ± 0.007
Beams	0.009 ± 0.003	0.025 ± 0.016
$K^+ n \rightarrow K^0 p,$ $K^0 \rightarrow \pi^+ l^- V$	0.005 ± 0.001	0.025 ± 0.008
Total bkg (evts)	0.298 ± 0.026	0.146 ± 0.049

Errors are statistical only.

Test correlations

- Change selection criteria
- Move the window

Κπ2	PV x KIN	10 x 10	20 x 20	20 x 50	50 x 50	50 x 100
	Observed	3	4	9	22	53
	Predicted	1.1	4.9	12.4	31.1	62.4
Κμ2	TD x KIN Observed Predicted	10 x 10 0 0.35	20 x 20 1 1.4	50 x 50 12 9.1	80 x 50 16 14.5	120 x 50 25 21.8
Κμ2γ	TD x KIN	10 x 10	20 x 20	50 x 20	80 x 20	80 x 40
	Observed	1	1	4	5	11
	Predicted	0.31	1.3	3.2	5.2	10.4

E787/E949 combined results

Combined plot of final samples.

Backgrounds have been enhanced.

	E949	E7	87
Candidate	E949A	E787A	E787C
S_i/b_i	0.9	50	7
W_i	0.48	0.98	0.88
Combined BR	(1.47	+1.30 -0.89)×10 ⁻¹⁰

Below the peak

Status of E949

- Data were taken in 2002. Upgrade was successful.
- DOE funds stalled.
- $K^+ \rightarrow \pi^+ \nu \nu$ study above the $K_{\pi 2}$ peak: completed.
- $K^+ \rightarrow \pi^+ \nu \nu$ study below the $K_{\pi 2}$ peak: in progress.
- $\pi^0 \rightarrow \nu \nu$ analysis: in progress.
- Analyses of radiative decay modes: in progress.
- Funding for runs from NSF?
- Other experiments using the E949 detector are being considered.

$$K_L^0 \rightarrow \pi^0 \nu \nu$$

Signature

- -2γ 's
- No other activity

$K_{I} \rightarrow \pi^{0} \nu \overline{\nu}$ and $K_{I} \rightarrow \pi^{0} \pi^{0}$ identification

Background sources from K decays

${ m K_L^0~Decay}$	$B/3 \times 10^{-11}$	Kinematic	Photon veto	Charged veto
$\pi^0\pi^0$ even	3.1×10^{7}	E_{π}^*	$\sqrt{}$	
$\pi^0\pi^0$ odd	3.1×10^{7}	$ E_{1\gamma}^* - E_{2\gamma}^* , M_{\gamma\gamma}$	$\sqrt{\checkmark}$	
$\pi^{\pm}e^{\mp}\nu\gamma$	1.2×10^{8}	$M_{\gamma\gamma}, \chi^2$	\checkmark	\checkmark
$\pi^{+}\pi^{-}\pi^{0}$	4.2×10^{9}	$E_{\pi}^*, E_{\mathrm{MISS}}$		$\sqrt{\checkmark}$
$\pi^0\pi^{\pm}e^{\mp}\nu$	1.7×10^{6}	E_π^*		$\sqrt{}$
$\pi^0\pi^0\pi^0$	7.0×10^{9}	E_π^*	$\sqrt{\sqrt{}}$	
$\pi^0 \gamma \gamma$	5.6×10^{4}		$\sqrt{\checkmark}$	
$\gamma\gamma$	2.7×10^{7}	$M_{\gamma\gamma},E_\pi^*$		

even \equiv both γ from same π^0 odd \equiv γ from different π^0

Detection concept

KOPIO Requirements

Parameters	Req.	Expected
$\Delta E_{\gamma} (E_{\gamma}^{-1/2})$	3.5 %	2.7 %
$\Delta heta_{\gamma}$ (250MeV)	25-30 mr	23 mr
$\Delta t_{\gamma} (E_{\gamma}^{-1/2})$	100 ps	50 ps
$\Delta x_{\gamma}^{}, \Delta y_{\gamma}^{}$	1.0 cm	<0.1 cm
Bunch width	300 ps	200 ps
$\overline{\gamma}$ ineff.	− € _{E787}	0.3·€ _{E787}

KOPIO Detector

Beam

Beam bunch resolution:

Required: 300ps

Data: 240ps Sim: 215ps

Expected: 181ps

Neutral Beam

- Large take-off angle ~ 45degree
- Low momentum: 0.5 1.5 GeV/c
 to allow TOF measurement
- Beam size: $5mr(V) \times 100mr(H)$
- $-3 \times 10^8 \text{ KL} / \text{spill}$, 12% decay
- -3.5×10^{10} neutrons / spill

Calorimeter

Size: 5.3m x 5.3m

Granularity: 11cm x 11cm

Radiation length: 16 X₀

Pb thickness: 0.275 mm

Scintillator: 3.5 mm

of layers: 300

 $\Delta E = 2.9 \pm 0.1 \text{ %/sqrt}(E(GeV))$

 $\Delta T = 90 \pm 10 \text{ ps/ sqrt}(E(GeV))$

(from early prototype)

Shashlyk modules: ~1000 Inefficiency (100MeV): 2x10⁻⁴ Time resolution(1GeV): 70-90ps

Charged particle veto

Major decay modes: $K_L \rightarrow \pi \mu \nu$

πεν

 $\pi\pi\pi$

e⁺
$$\rightarrow \gamma$$
 and $\pi^- p \rightarrow \pi^0 n$
Inefficiency: e⁺ < 10^{-4}
 π^- < 10^{-4}
other < 10^{-5}

other

Catcher (Forward PV)

•Module size: 30cm x 20cm

•# of modules: 370

•# of layers: 25 (8.3 X₀)

•Pb thickness: 2mm

•Forward beam hole counters

•Pb/aerogel tile counters

• $\epsilon_{\gamma} > 99\% \ (0.3 \text{GeV/c})$

•Insensitive to slow particles

• $\varepsilon_n < 0.3\% \ (0.8 \text{GeV/c})$

Examples of background distributions

Process	Events
$K_L^0 \to \pi^0 \nu \bar{\nu}$ at SM rate	40
$ m K_L^0 ightarrow \pi^0 \pi^0$	12.4
${ m K_L^0} ightarrow \pi^\pm e^\mp u \gamma$	4.5
$ m K_L^0 ightarrow \pi^-\pi^+\pi^0$	1.7
${ m K_L^0} ightarrow \pi^\pm e^\mp u$	0.02
$ m K_L^0 ightarrow \gamma \gamma$	0.02
$\Lambda o \pi^0 n$	0.01
Interactions $(nN \to \pi^0 X)$	0.2
Accidentals	0.6
Total Background	19.5

Status of the Experiment

- Approved by NSF in 2003.
- \$6M R&D funds in FY04.
- \$30M for RSVP in the 2005 president's budget.
- House approved.
- KOPIO schedule

- 2004	Detector R&D
-2005-2006	Construction of beam line.
-2006-2008	Construction and Installation
	of the detector.
- 2009 ~	Engineering run
	Physics run

